banner
뉴스 센터
우리의 목표는 끊임없이 새롭고 혁신적인 제품을 글로벌 시장에 출시하는 것입니다.

셀레늄과 칼륨의 엽면 적용 효과

May 11, 2024

Scientific Reports 12권, 기사 번호: 15119(2022) 이 기사 인용

746 액세스

1 인용

측정항목 세부정보

본 연구에서는 토양 및 귀리 식물의 질소, 인, 칼륨(NPK) 농도, 귀리 수확량, 작물의 유기물과 같은 여러 매개변수의 변화를 기반으로 다양한 농도의 셀레늄(Se)을 엽면 적용하는 효과를 조사했습니다. 토양(OMS), 비효소 항산화제, 총 페놀 함량. 귀리 짚과 씨앗에서 크롬(Cr), 철(Fe), 망간(Mn), 아연(Zn) 및 구리(Cu) 농도도 평가되었습니다. 이 연구는 지역 및 국가 지침을 준수합니다. 이 연구에서는 부식산염 칼륨(K-휴산염)과 Se의 동시 적용도 조사되었습니다. Se 적용은 토양 내 N과 P의 생물학적 이용률을 증가시키고 각 식물의 짚과 씨앗의 총 농도를 증가시켰습니다. Se 농도는 토양(P-토양)에서 발견되는 인의 양에 비례했지만 종자(K-식물)의 K 농도에는 비례하지 않았습니다. Se와 함께 K-휴민산염을 적용하면 K-토양의 생체 이용률이 증가했습니다. 그러나 K-짚이나 K-씨앗의 생체 이용률은 증가하지 않았습니다. Se 단독 적용으로 수율이 크게 향상되었으나, K-휴민산염을 동시에 적용한 경우에는 추가적인 효과가 나타나지 않았습니다. 게다가, K-휴메이트를 포함하거나 포함하지 않고 Se를 적용한 후에 종자 수확량 및 식물 길이의 반응은 유의하지 않았습니다. OMS와 총 페놀 함량은 K-휴메이트가 있거나 없는 Se의 적용률에 비례했습니다. 비효소 항산화제 함량 역시 Se 농도에 비례했지만 K-휴메이트에는 비례하지 않았습니다. 토양, 식물 짚 및 종자의 총 Se 농도는 K-휴메이트를 첨가함에 따라 증가했습니다. 더욱이, Se와 K-휴메이트를 적용한 후 전체 Cr 농도가 감소했습니다. 짚과 씨앗의 Fe 농도는 처리별로 다양했으며, Mn 농도는 Se와 K-부식산염을 엽면에 적용한 결과 감소했습니다. 다양한 농도의 Se를 적용하면 식물의 짚과 씨앗의 Zn 농도가 감소했습니다. Se의 적용률을 높이면 종자의 Cu 농도가 감소합니다. 대조적으로, Se와 K-휴민산염을 동시에 시용하면 종자의 Cu 농도가 증가했습니다.

셀레늄(Se)에 대한 연구는 Schwartz와 Foltz가 사료에 포함된 Se가 쥐의 간경변증과 근이영양증을 예방한다는 사실을 발견하면서 시작되었습니다1. 항산화 및 항암 특성을 바탕으로 Se는 식물에서 항산화제로 작용하는 등 다양한 기능을 가지고 있습니다2.

식물의 성장은 토양에서 이용 가능한 Se 농도에 의존하지 않습니다. 그러나 인간의 식품과 동물 사료의 셀레늄 농도는 건강에 중요한 영향을 미칩니다3. 필수 영양 요구 사항을 충족하는 Se 농도와 독성 Se 농도 사이의 경계는 좁고 화학적 형태와 환경 조건에 의해 영향을 받습니다2. Se는 UV로 인한 산화 스트레스를 견디고 노화된 묘목의 성장을 촉진하며 노화를 지연시키는 식물의 능력을 변형시킬 수 있습니다. Se 나노입자(SeNPs)는 광합성 색소, 총 수용성 당, 항산화 효소(아스코르브산 퍼옥시다제, 카탈라제 및 퍼옥시다제), 페놀 함량, 총 플라보노이드 및 지질 과산화를 변경하여 땅콩 품종의 성장에 영향을 미쳤습니다. 대조적으로, 모래 토양 조건은 스트레스 요인이나 자극제로 SeNP를 적용한 후 식물 내성을 향상시켰습니다. Se 적용은 또한 광화학 효율에 대한 부정적인 염분 효과를 역전시켰습니다2. Se 첨가제 적용으로 중금속, 열, 자외선(UV)-B, 추위, 염분 스트레스 및 가뭄으로 인한 부작용 발생이 감소했습니다5.

부식산 칼륨(KHM) 및 풀빅산 칼륨(BSFA)과 같은 유기 비료는 식물 질병을 예방하고 토양 구조를 개선하며 토양 영양 수준을 높이는 데 사용됩니다6. KHM과 BSFA 첨가는 미생물 기능과 영양 수준을 재형성하여 인삼 토양에서 증가하는 것으로 나타났습니다6. 또한 KHM을 적용하면 종자 발아, 영양분 흡수 및 묘목의 성장이 향상되었습니다7.

 Se2 > Se1 > control. Thus, Se was found to increase the available N-soil in an application-rate-dependent manner (Table 2). The availability of N-soil after Se application was improved via the simultaneous application of K-humate with the same rate-dependence as observed with Se alone. Comparable results were found using the sum of means for analysis. The insignificant difference found between the sum of means for control and treatment at an Se concentration of 12 × 10−3 mM Se may reflect the relatively low concentration of Se used./p> Se2 > Se1 > control (Table 3). Thus, the foliar application rate of Se caused a rate-dependent increase in the available P-soil. Simultaneous application of K-humate further increased P-soil availability. A rate dependency similar to Se alone was also observed with simultaneous Se and K-humate application. A similar result was observed using the sum of means for data analysis. Significant differences were observed among all treatments./p> Se2 > Se1 > control. Insignificant differences between values were observed when Se was applied without K-humate at concentrations of 12 × 10−3 and 63 × 10−3 mM, and for the sum of means for Se and K-humate applications at concentrations of 12 × 10−3 and 63 × 10−3 mM. Thus, the application rate of Se caused a proportional increase in P-soil, P-straw, and P-seeds. Furthermore, the simultaneous application of K-humate augmented this effect./p> Se2 > Se1 = control (Table 4). Again, the foliar application rate of Se causes a proportional increase, in this case, in K-soil. The application of K-humate with Se augmented this effect. A similar rate dependency was also observed with simultaneous application and when the sum of means was used. An insignificant difference was observed between the sum of means for controls and Se concentrations of 12 × 10−3 mM./p> Se2 > Se1 > control. The simultaneous application of K-humate increased the yield only slightly, resulting in insignificant differences. Similar findings were also observed when the sum of means was used. In contrast, seed production was not significantly affected, and plant length (m × 10–2) did not show a significant response. In contrast, Se application to potato plants enhanced tuber yield, plant growth, and quality compared with controls. Moreover, Se application along with different N additions ultimately increased potato productivity compared with Se or N alone23. Similarly, the grain yield increased when Se was applied; this application was significant at low levels24./p> Se2 > Se1 > control. The addition of K-humate by foliar application significantly augmented the OMS content (%) (Table 6). Application of Se also increased the non-enzymatic antioxidant content; however, the increases were insignificant at Se concentrations of 12 × 10−3 and 63 × 10−3 mM. The highest values for non-enzymatic antioxidants were observed at Se concentrations of 88 × 10−3 mM. The application of K-humate along with Se did not significantly augment the effects observed after the application of Se alone. Analyses using the sum of means were completely consistent with these findings./p> Se2 > Se1 > control. Furthermore, this effect was significantly amplified with the simultaneous application of K-humate. Analysis using the sum of means gave comparable results. Se enhances the ability of plants to cope with stress by stimulating plant cell antioxidant capacity though the upregulating of antioxidant enzymes, such as CAT, SOD, and GSH-Px. Se also increases the synthesis of PCs, GSH, proline, ascorbate, alkaloids, flavonoids, and carotenoids. Se may also induce the spontaneous dismutation of the superoxide radical into H2O2. Elevated antioxidant capacity can reduce lipid peroxidation by lowering ROS accumulation under metal-induced oxidative stress conditions25. Application of Se using foliar spray also induced an increase in the concentration of rosmarinic acid20./p> Se2 > Se1 > control. The additional application of K-humate significantly amplified these effects (Table 7). The treatment of K-humate that increased Se content in the soil may be owing to experimental errors, however, increasing Se content in either straw or seeds may be owing to the increased stimulating movement from soil to different parts of the plant. Se-straw content increased with increasing the Se foliar application; this effect decreased in the following order: Se3 > Se2 > Se1 > control. The simultaneous application of K-humate augmented the effects observed after the application of Se alone. Total Se concentration also increased Se-seeds like Se-straw for Se alone, Se with K-humate, and using the sum of means for analysis./p> Se3 > Se1. In response to Se application, the Cr-straw content decreased (Table 8). The difference between Se2 and Se3 was insignificant. K-humate addition induced a notable increase in Cr-straw in the following order: control > Se3 > Se2 > Se1. This may be owing to the increased stimulating movement of Cr from soil to different parts of the plant. Results obtained from Se treatments varied depending on the presence of K-humate. Cr-seeds decreased in the following order: Se2 > Se3 > Se2 > control. The addition of K-humate increased the Cr-seed content compared with Se alone; however, the difference between Se2 and Se3 was insignificant. Analysis using the sum of means did not produce significant differences./p> Se1 > control > Se2 (Table 9). Differences were insignificant among control, Se1, and Se2. K-humate caused concentrations of Fe-straw to significantly increase in the following order: control > Se3 > Se2 > Se1. Differences between control and Se3 as well as Se1 and Se2 were insignificant. Analysis using the sum of means was similar. Neither Se nor Se with K-humate applications produced significant changes in Fe-seeds. Analysis using the sum of means was similar. Low concentration of Se application may enhance plant productivity and encourage phytoremediation by improving plant tolerance to stress and enhancing photosynthesis25. Further, a significant increase was observed in concentrations of Fe and S in rice grain grown in N-limiting conditions while Ca that have been treated with Se regardless of N supply21./p> Se2 > Se1 > Se3. No significant difference was found between control and Se1 (Table 10). In contrast, K-humate addition further reduced Mn-straw concentrations in the following order: control > Se1 > Se3 > Se2. The control and Se1 were not significantly different when using the sum of means for analysis. Likewise, no significant difference was seen between Se1 and Se3. Accumulation of Mn in seeds varied among treatments in the following order: control > Se2 > Se3 > Se1. K-humate addition altered this order to be in the following order: control > Se2 > Se1 > Se3. No significant differences were observed between Se2 and Se3 when the sum of means for analysis was used. Previously, the application of Se increased the concentrations of Mg and molybdenum in grains grown in 16 and 24 mM N compared with N-limited plants21./p> Se1 > control > Se3 (Table 11). The application of K-humate with Se resulted in some insignificant variations compared with the application of Se alone. Control, Se1, and Se3 were insignificantly different when the sum of means was used for the analysis. Concentrations of Zn in seeds were reduced after Se application. K-humate with Se foliar application altered the concentration of Zn in seeds with impacts in the following order: control > Se3 > Se1 > Se2. The difference between Se1 and Se3 was insignificant. Additionally, insignificant differences in Zn concentrations after application of Se1, Se2, and Se3 were found when the sum of means was used for analysis. Low concentrations of Se possibly enhance plant productivity and phytoremediation capacity by improving the ability of plants to tolerate stress and enhancing photosynthesis25./p> control > Se2 > Se3 as it shown in Table 12. Application of Se with K-humate showed significant changes in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. No significant differences were observed using the sum of means for analyses. In contrast, the foliar application of Se resulted in increases in Cu-seed at concentrations of Se1 and Se3; however, at 63 × 10−3 mM (Se2), a reduction in Cu-seed was observed. K-humate with Se simultaneously resulted in increased Cu-seed content with impacts decreasing in the following order: Se3 > Se1 > control > Se2. The sum of means analysis showed no significant variation between control and Se2. Previously, the application of Se led to a decrease in the concentrations of Cu in grains grown in 16 and 24 mm N compared with N-limited plants21./p> Se1 > control > Se3. Concentrations of Zn in oat seeds were reduced by Se supplementation. Increases in Se concentrations from 12 × 10−3 to 88 × 10−3 mM reduced Cu-seed, and Se application with K-humate produced only insignificant increases in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. The additional application of K-humate altered this order to Se3 > Se1 > control > Se2./p>